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J. Phys. A: Math. Gen. 18 (1985) 989-993. Printed in Great Britain 

AC conductivity for the two-dimensional 
bond-percolation problem 

Reiner Biller 
Institut fur  Theorie der Kondensierten Materie, Universitat Karlsruhe, Kaiserstrasse 12, 
75 Karlsruhe, West Germany 

Received 27 September 1984 

Abstract. The frequency-dependent conductivity for the bond-percolation model in two 
dimensions is determined on a 300 X200 square lattice in the frequency range IO-’ 5 o 5 5 .  
Close to pE = 0.5 the real and imaginary parts of the conductivity can be fitted by power 
laws for a certain frequency range: u R - w x ~ ,  u I - w x l ,  where xR=0.345*0.005, xI = 
0.318i0.005. The difference in xR and x, is in contrast to recent theories on anomalous 
diffusion on percolation clusters which predict xR = xI. The result for xR supports arguments 
which, contrary to the Alexander-Orbach rule, suggest p /  Y = 1 in d = 2. 

Considerable interest has been devoted recently to the problem of anomalous diffusion 
on percolation clusters (Gefen et a1 1983, Alexander and Orbach 1982, Ben-Avraham 
and Havlin 1982, Aharony and Stauffer 1984, Laibowitz and Gefen 1984, Pandey er 
a1 1984, Harris et a1 1984). At intermediate frequencies and close to p c  the diffusing 
particles are expected to reveal the fractal structure of the clusters in the system. Using 
scaling arguments, Gefen et a1 (1983) show that for o(2+e >> 1 

uAC- (iw)” ( 1 )  

x = (2+ e l P /  v 
where 

and 6 = ( P - P 11 v. 
( is the correlation length, which diverges as 6 -  Ip - p J ”  close to pc .  The exponents 
p and P describe the behaviour of the DC conductivity u D C - ( p - p c ) *  and the 
probability to belong to the infinite cluster P,- ( p  - p c ) s  respectively (for a review on 
percolation theory see e.g. Stauffer (1979)). 

Alexander and Orbach (1982) have observed that for percolation clusters there is 
a unique ‘fraction’ dimensionality d = $ for d > 2. Taking the ‘Alexander-Orbach rule’ 
seriously, one obtains 

P I V  = t ( d  - $ - P / 3 Y ) ,  (2) 

p /  v = = 0.948. (3) 

X A O  = f. (4) 

which at d = 2 is 

For the AC conductivity exponent x one obtains 
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Aharony and Stauff er ( 1984), however, recently conjectured that relation (2) should 
be replaced by 

p / V = d  - 1 ( 5 )  

xAS = 0.3453. ( 6 )  

p /  U = 0.973 * 0.005 ( 7 )  

for d S 2.1. Using this value for p /  v one obtains at d = 2 

Accurate Monte Carlo simulations at d = 2 give e.g. 

(Zabolitzky 1984, see also Hong et a1 1984, Lobb and Frank 1984, Herrmann et a! 
1984) which excludes both equations (2)  and ( 5 ) .  

In a recent paper (Biller 1984) I have presented a simple and accurate procedure 
to determine the frequency-dependent conductivity for a variety of one-dimensional 
diffusive systems. It turns out that this procedure can be easily extended to the 
two-dimensional case (for lattices of up to 300 X 200 sites), and that it is particularly 
useful to determine the AC conductivity in the so-called anomalous region, where the 
fractal structure of the large clusters is important. 

Similarly to the one-dimensional case, the simulation starts by generating a square 
lattice of 300 ~ 2 0 0  sites, where the bonds are occupied according to a probability p .  
Then the discretised version of the two-dimensional diffusion equation is solved for 
100 000 time steps with an equilibrium density of particles P,, = 1 at time t =0,  an 
electrical field of the form E, = and periodic boundary conditions. At each time 
step the spatially averaged current in the x direction is determined, which is finally 
Fourier transformed to give the complex AC conductivity for w 2 

This algorithm is well suited for parallel processing, and thus a single run only 
takes about 12 minutes on a Cyber 205 vector processor. Error sources due to the finite 
network, the finite number of time steps, and the finite discretisation parameter were 
tested and found to be small for the frequencies considered here. 

Figures 1 and 2 give an impression of the results obtained using this simulation 
method. Obviously for p close to p c  = 0.5 and 5 x d w d lo-’ both the real and 

I 

lo-’ ; 

OR ’ ,  

10-2 ; 

I 
10-4 J 

10-3 10-2 lo-’ 1 
w 

Figure 1. Real part of the frequency-dependent conductivity (uR) for various p and 
IO-’ c w s S. Some data points are drawn explicitly to indicate the error bars. 
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Figure 2. As figure 1, but for the imaginary part of the conductivity, U,. 

the imaginary part of the conductivity can be fitted by power laws for anomalous 
diffusion: uR-uX~, u l - w x ~ .  

At o =r 1 the crossover to the high frequency limit um = p takes place. Well below 
p c  and at low frequencies the conductivity follows the asymptotic form U - aio + b o 2  
(Odagaki et a1 1983). The condition for the anomalous regime to develop (Gefen er 
a1 1983), 

is seen to be very stringent: although e.g. for p = 0.47 one obtains a crossover frequency 
U,= 

(figure 1). 
The error bars in figures 1 and 2 are due to the fluctuations one expects from 

different realisations for a given p. Note that close to pc and at intermediate frequencies 
the fluctuations are small, which shows that the fractal structure of the clusters is 
insensitive to different realisations. 

To determine the slopes of the complex conductivity in the anomalous diffusion 
regime I did 24 independent runs at or close to pc, i.e. Ip -pcJ  6 The results of 
two of these runs are shown in figure 3. Note that the anomalous region is less 
developed in uI than in uR. This might be due to the fact that correction terms to the 
scaling form (1 )  are more important in uI than in uR. It is also obvious that uI has a 
different slope from oR in the anomalous region. Using a least squares fit to determine 
these slopes, I obtained the following average values: 

op+e, >> 1, 

deviations from power law behaviour can already be seen for w 4 

XR = 0.345 * 0.005, 5 ~ 1 0 - ~ < ~ < 1 0 - '  (8) 

XI = 0.3 18 f 0.005, 5 ~ 1 0 - ~ < ~ < 5 x 1 0 - ~ .  (9) 

The deviation between xR and x, cannot be explained by the scaling arguments of 
Gefen et a1 (1983). However, this deviation might also be due to corrections to the 
simple scaling form (1) .  

Note that the relative value of the imaginary to the real part of the conductivity is 
roughly in accordance with what one expects from equation ( 1 )  

ul/uR = tan(frx) ,  (10) 
for the anomalous region. 
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Figure 3. Two examples of the AC conductivity at pF = 0.5. is the average occupancy of 
the sites generated by the run. The slopes of the broken lines were determined by a least 
squares fit. Some data points are shown to indicate the error due to the finite lattice and 
the discretisation of the diffusion equation in time. 

For some runs at pc,  I have also determined the slope of the time-dependent 
conductivity which should behave as 

(11) (T, - t - ( ’ + x ) .  

Typical values for x were of the order of x = 0.35, but they were scattering widely 
(*0.05) from run to run. 

Because the anomalous region is best developed in ( T ~  it is most appropriate to 
compare the exponent xR (8) with the theoretical predictions (4), (6). In contrast to 
Zabolitzky’s ( 1984) work, this simulation clearly supports the argumentation of 
Aharony and Stauffer, as can be seen from the close agreement of equations (6) and (8). 

In conclusion, I have used a simple simulation procedure to determine the slopes 
of the real and imaginary parts of the AC conductivity for the two-dimensional 
bond-percolation problem in the anomalous diffusion region where >> 1. I have 
shown that the slopes of ( T ~  and uI differ appreciably, which cannot be accounted for 
by simple scaling arguments (Gefen et a1 1983). I have also shown that the anomalous 
diffusion regime is less developed in (T, than in uR and that the condition for the 
anomalous region to develop, w,$(~+’)  >> 1, is very stringent. 

My result for the exponent of the real part of the conductivity xR shows that the 
Alexander-Orbach rule breaks down at d = 2. It is in agreement with arguments which 
suggest p /  Y = 1 in d = 2 (Aharony and Stauffer 1984). 
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